Light Scattering: In situ characterization of nano-materials

Sara Hashmi
Yale University
Department of Chemical & Environmental Engineering
Materials Characterization

• Carbon nanotubes
• Metal oxide nanoparticles
• Liposomes & micelles
• Homogeneous vs. Heterogeneous Catalysts

Structure Determines Function
Understanding Dynamics

• Precipitation processes
• Gel growth
• Aggregation & sedimentation (or creaming)

Dynamics Reveals Mechanisms & Interactions
Outline

• Methods
 – Dynamic Light Scattering: particle size; growth dynamics
 – Static Light Scattering: aggregate structure

• Selected Projects
 – Control Asphaltene Precipitation & Growth at the Colloidal Scale
 – Identify Homogeneous vs Heterogeneous Catalysis in Water Oxidation
 – Gelation of EPS in Seawater
 – Identify Structure-Function relationship in Carbon Nanotubes

• Additional Projects
Methods
What Can DLS Measure?

- Hydrodynamic Sizes
- Size Distributions
- Aggregation Rates
- Critical Micelle Concentration

DLS reveals Brownian motion of a certain size range

Types of Materials:
- suspensions, emulsions, microemulsions, polymers, micelles
Scattered Light Intensity: $t = 0$

If particles remain fixed, so does intensity at detector

Static scattering reveals structure
Scattered Light Intensity: $t = \Delta t$

Particles have diffused

If particles move, intensity at detector changes

Duration of Δt before intensity changes gives time scale of motion

Dynamic light scattering reveals ensemble average motion

Detector

$I = I(\Delta t) \neq I_0$
Dynamic Light Scattering: Raw Data

Fluctuations in scattered light arise from diffusive motion

Real-time hardware correlators measure lag time Δt at which $I(\Delta t) \neq I_0$

Diffusion = $\frac{\text{Length}^2}{\text{Time}}$

Length: $\frac{1}{q}$

Stokes Einstein

$D = \frac{k_B T}{6 \pi \mu a}$
Dynamic Light Scattering: Raw Data

Fluctuations in scattered light arise from diffusive motion

\[g(\Delta t) \approx \exp\left(-\frac{\Delta t}{\tau}\right) \]

OR extract time scale distribution

\[g(\Delta t) = \int p(\tau) \exp\left(-\frac{\Delta t}{\tau}\right) \, d\tau \]

Diffusion = \frac{\text{Length}^2}{\text{Time}}

\[q = 4\pi n \sin\left(\frac{\theta}{2}\right)/\lambda \]

Length: \frac{1}{q}

Stokes Einstein

\[D = \frac{k_B T}{6\pi \mu a} \]
Assessing aggregation

Uniform growth – all particles become incorporated into larger structures

Primary particles grow, but remain; Aggregates form ~2 orders of magnitude larger
Suspension Stability

- Scattered Intensity (magnitude only vs. time)
 - Aggregation/sedimentation over time
 - Addition of salts/surfactants can affect stability

![Graph showing intensity at 90° vs. time]

Methods
- Precipitation Control NP Synthesis Gelation Structure ↔ Function Additional Projects
Electrophoretic mobility & Zeta Potential

\[\mu \equiv \frac{v}{E} \]

Balance electrostatic and hydrodynamic forces:
\[\mu \approx \frac{Qe}{6\pi \eta a} \]

Zeta Potential Measurements via Phase Analysis Light Scattering
Analogous to Doppler shift, but electric field oscillates

Hückel Theory:
\[\zeta = \frac{3\mu\eta}{2D\varepsilon_0} \]
For low ionic strengths (apolar) \(\kappa^{-1} >> a \)

Smoluchowski:
\[\zeta = \frac{\mu\eta}{D\varepsilon_0} \]
For high ionic strength (aqueous) \(\kappa^{-1} << a \)
Static Light Scattering

- Fractal dimension of aggregates; $qR > 1$

$I \approx q^{-D_f}$

$D_f \sim 1$

$D_f \sim 3$
Stabilizing Asphaltene Precipitation

Sara Hashmi
Kathy Zhong, Leah Quintiliano
Abbas Firoozabadi
Asphaltene precipitation

Soluble in aromatic solvents (*solvents*)
Insoluble in light alkanes (*precipitants*)

Highly aromatic crude components

π-stack even when stable

Colloid growth & aggregation

Liquid-liquid separation

Sedimentation & deposition

Asphaltene Precipitation

- Mix oil with precipitant (heptane)
- Assess sedimentation, aggregation
- Precipitate in heptane with dispersant

Dodecyl benzene sulfonic acid

Centrifuge & decant:

| DBSA (ppm) | 50 | 250 | 750 | 2,500 | 7,500 | 10,000 |

Aggregation & Dissolution by Acid

CV $\chi=600$ mL/g; dissolution beyond $c=2500$ ppm

At fixed χ (mL/g)

stable at $c \approx 100$ ppm

DBSA: dissolution at $c \approx 100$ ppm for SB, QAB; $c \approx 2500$ ppm for CV

Stabilization without dissolution

CV $\chi = 600 \text{ mL/g}$

At fixed $\chi (\text{mL/g})$

Non-ionic dispersant: No dissolution even above 1 wt% dispersant

Particle size with non-ionic dispersant

\[\chi (\text{mL/g}): \]
- CV: 600
- QAB: 100
- SB: 30

\[\langle q \rangle (\text{nm}) \]

\[c (\text{ppm}) \]

aggregation

stable suspensions
no dissolution

fixed \(\Phi \sim 10^{-4} \)

cmc of dispersant in heptane

Increasing mobility with dispersant

Stabilization by adsorption

- Adsorption isotherms corroborate particle characterization
- Non-ionic dispersant: cmc ~ 10 ppm in heptane
- Stabilizes asphaltenes below cmc

Dispersant micelles not required for charge stabilization; isolated dispersant molecules can cover negative charges.

Water Oxidation Catalysis: Homogeneous or Heterogeneous?

Ulrich Hintermair, Staff Sheehan, Julie Thomsen
Crabtree & Brudvig Labs
Yale Chemistry
Water Oxidation

Goal: \(2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2\) Water Splitting

Two Half Reactions:

- Reduction (lower activation barrier): \(4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{H}_2\)
- Oxidation (higher activation barrier): \(2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e}^-\)

Oxidant: CAN ceric ammonium nitrate (high oxidative potential)
NaIO\(_4\) Sodium periodate (lower oxidative potential)

Catalyst: \(\text{Ir}^{\text{III}} \rightarrow \text{Ir}^{\text{IV}}\)

\(\text{H}_2\text{O} \rightarrow [\text{Ir}] \rightarrow \text{O}_2\)

\(\text{BDE} = 115\ \text{kcal/mol} \quad 4\ \text{e}^- \text{ox.}\)
Oxidation Catalysis

- Platinum: acid stable; not very active
- Ruthenium: active; not acid stable
- **Iridium: active & active stable**

Iridium Precursors

- \(\text{Cp}^* = \text{pentamethylcyclopentadienyl} \)

- Various ligands: tune properties of molecular materials; tune activity
Iridium Catalysis

• **Blue Solution** develops during oxidation reaction

UV-vis measurements

Reaction Assessed by Oxygen Generation

- Oxygen generated at same time as formation of blue band; oxidant gets consumed

If the ligands are stable against oxidation...

- No light scattering... no particles...

→ Homogeneous catalysis

If the ligands are oxidized...

- Particles!

→ Heterogeneous catalysis

Concentration limits initial growth dynamics

![Graph showing particle formation kinetics with data points for 150 equivalents NaIO₄ in blue and 75 equivalents NaIO₄ in green.](image)

- **150 equivalents NaIO₄**
- **75 equivalents NaIO₄**

Particle Formation
Reaction Kinetics
Metal Oxide Particle Synthesis

- Aggregation is diffusion controlled

\[
R^2 = 0.994
\]

Power law dynamics in aggregate growth
Aggregate Characterization

Feature at ~30 nm: primary particle size

Over time D_f evolves to ~2

Suspension forms

Solution only
“Green” Metal Oxide NP Synthesis

- Aqueous, room temperature
- Simplest precursor (off-the-shelf)

![Chemical formula](image)

Graphs:
1. Intensity at 90° vs. time (hours)
2. Particle size vs. time (minutes)

(in preparation)
Gelation in Seawater

Edo Bar-Zeev & Marissa Toussley
Elimelech Lab
EPS = extracellular polymeric substances

• Anything secreted by bacteria, microorganisms
 – Polysaccharides, proteins, lipids, may contain DNA
• Important in formation of biofilms, pathogenesis
 – Participate in quorum sensing
• Naturally occurring in fresh and seawater

Hydrogel kinetics will be dependent mainly by:

- Concentration,
- Polymer chain size
- Charge density
- Topology (linear, branched)

Abiotic Gel Formation

Methods Precipitation Control NP Synthesis Gelation Structure ↔ Function Additional Projects

Nanogels interpenetrate through axial diffusion

* Low activation energy (<50 kJ mol⁻¹)

* Ca²⁺ cross-link COOH groups in neighboring TEP

Abiotic Gel Formation

Abiotic Hydrogel Formation

TEP precursors

Nanogels

TEP micro

TEP macro

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

Ca^{2+}

TEP = “transparent exopolymer particles”

>>Assembly

Disassembly<<

>>Anneal

Fracture<<

Nanogel Formation: Kinetics & Size

Scattered Intensity

Increasing scatter indicates *Gel formation* with time

Dynamic Light Scattering

0 - - - **Size** - - - 170 nm

0 - - - **Time** - - - 72 h
Nanogel Structure

Methods Precipitation Control NP Synthesis Gelation Structure ↔ Function Additional Projects

Static Light Scattering (SLS)

Fractal dimension (D_f): $I/I_0 = q^{-(D_f)}$

$D_f : 1.7$ Diffusion-limited aggregation: imply on a sticky particles

$D_f : 2.2$ Reaction-limited aggregation: imply on a repulsion barrier

Bar-Zeev et al. in progress
Carbon Nanotubes
Dispersion ↔ Function
Leanne Pasquini, Seyla Azoz
Zimmerman & Pfefferle Labs
Environmental Impacts of CNTs

• Applications & Implications
• Release of CNTs to the environment through (products and manufacturing waste)
• Evidence of negative effects of exposure
Proposed Cytotoxicity Mechanism

- **Chemical Perturbation**
- **Physical Perturbation**

Reactive Oxygen Species (ROS)

Oxidative stress can lead to RNA, DNA, and protein damage in the cell.

In Vivo Cytotoxicity

Escherichia Coli K12 are exposed to CNTs in aqueous suspension.

(Alternate assay: on a membrane)

- 0.9% Saline
- CNT
- *E. coli*
- Incubated 1 h, 37°C
- Constant rotation
- 10-fold Dilutions
- Incubate 37°C overnight

Methods
- Precipitation
- Control
- NP
- Synthesis
- Gelation

Structure
- Function
- Additional Projects

Functionalized SWNT Cytotoxicity

- Identify specific physicochemical properties that correlate with the cytotoxicity.
- Ultimately leading to future safer design of SWNTs
- Maintain functionality; minimize negative impact

Surface Functional Group

How does functionalization affect stability?

Loss of Cell Viability (%)

Very broad distributions

Compare diffusive time scales (non-spherical)

Quantify Dispersion: Fractal Dimension & Polydispersity
How does functionalization affect stability?

Narrower distributions

Compare diffusive time scales (non-spherical)

Quantify Dispersion: Fractal Dimension & Polydispersity
Cytotoxicity Mechanism

Quantify Dispersion: Fractal Dimension Polydispersity

Surface functional groups

Dispersed aggregate state

SWNT toxicity

Controlling MWNT Dispersions

Nitric Acid Treatment Time (hrs)

HNO₃ treatment increases surface oxygen (COOH) Facilitates more well-dispersed rod-like structures

SWNT in water: Azoz et.al. *(in preparation).*
Additional Projects
Silica NPs/s-SEBS microcapsules

(a) Organic Phase

Capsule from water-oil emulsions
Shell made of nanoparticles and polyelectrolytes

Capsule Shell

Polycation
Silica NPs

Gilad Kaufman, Raphael Sarfati, Osuji Lab
Liposomes with Magnets & Contrast Agent

End goal: protect the body from contrast media during X-Ray Imaging of soft tissue

EXTRANAL MAGNET to retrieve contrast agents after imaging

Encapsulation of contrast agent to avoid biological interaction

200 nm liposome (PEG)

Trey Turner & Candice Gurbatri, van Tassel Lab
Selenium Remediation via nano-Hematite

Selenium in the Environment

- Selenite (Se(IV))
- Selenate (Se(VI))

Se(VI) more difficult to remediate than Se(IV).

Iron Oxide NPs
- Thermodynamically stable
- Cheap & abundant
- Increased surface area to volume

Hematite (α-Fe₂O₃)
- Iron oxides = nature’s adsorbent
- Thermodynamically stable
- Cheap & abundant

Nano Hematite (nα-Fe₂O₃)
- Increased surface area to volume

Amanda Lounsbury, Zimmerman Lab
Biomimetic Membranes Using Aquaporin

• **Project goal:**
 – Vesicle rupture approach to fabricate a biomimetic membrane for water desalination incorporating the protein water channel aquaporin

• **Intermediate Formulations & Characterization:**
 – Stable, monodisperse vesicles constructed of lipids or block co-polymers

• **People:**
 – Menachem Elimelech (PI)
 – Corey Wilson (co-PI)
 – Jay Werber (graduate student)

Jay Werber, Elimelech Lab
Photoluminescence indicates average band gap $E_g \approx 1.89 \text{ eV}$

Interaction with light can produce singlet oxygen (ROS)

Disinfection Technologies?

Kyle Moor, Ezra Cates, Kim Lab
Fullerene aggregation

Salt reduces magnitude of surface charge; destabilizes suspension

EPM (μm s⁻¹ V cm⁻¹)

(a)

0 mg/L HA

1 mg/L HA

NaCl (mM)

0 100 200 300 400

0.0 0.5 1.0 1.5 2.0

500 mM NaCl + FNPs

Meng, Z. et al. Langmuir
Acknowledgements

• Meny Elimelech: Edo Bar-Zeev, Marissa Toussley, Jay Werber
• Julie Zimmerman: Leanne Gilbertson, Amanda Lounsbury
• Chinedum Osuji: Gilad Kaufman
• Paul van Tassel: Trey Turner, Candice Gurbatri
• Jaehong Kim: Kyle Moor
• Bob Crabtree/Gary Brudvig: Ulrich Hintermair, Julie Thomsen, Staff Sheehan
Thank You!

Questions?
Extra Slides
How Small?

In water; 532 nm; 90°

$g(\Delta t) \approx \exp(-\Delta t / \tau)$

$q = \frac{4\pi n \sin(\theta/2)}{\lambda}$

$\tau = \frac{1}{2q^2D}$

$D = \frac{k_B T}{6\pi \mu \alpha}$

Particle size measurement: spherical approximation

10^{-2} ms \rightarrow \sim 2 nm
Interconversion

- Molecular species \rightarrow particles (blue) \rightarrow reduction to molecular species (yellow)

Understanding particle size decrease

Dispersant increases surface area; no dissolution: \(\frac{SA}{V} \propto c \)

Spheres: \(\frac{SA}{V} \propto a^{-1} \rightarrow a \propto c^{-1} \)

What if the particles aren’t spherical?

For fractal objects: \(\frac{SA}{V} \propto a^{-(3-D_f)} \) \(\rightarrow a \propto c^{-1/(3-D_f)}\)

Evidence for surface adsorption

\[a \propto c^{-1/(3-D_f)} \]

Model requires measure of \(D_f \)

By SLS:

\[D_f = 1.63 \]

\[\chi (\text{mL/g}): \]

- CV: 600
- QAB: 100
- SB: 30

Model: Slope = -0.73, \(R^2 = 0.96 \)

cmc of dispersant in heptane

Instrument Setup

• ALV 5000 goniometer + Verdi laser (Coherent)
• Instrument parameters: wavelength λ, scattering angle θ, temperature T
• Suspension parameters: index of refraction n, viscosity μ
Dynamic Light Scattering: Setup

- Incident light
- Diffusing colloids in a sample
- Unscattered light
- Light scatters in all directions
- Fluctuating scattered light intensity
- Detector

Fluctuations in scattered light arise from diffusion
Size Distributions: non-monodisperse

CONTIN: Provencher (1982)

Distinct decays indicate distinct particle populations

\[g(\Delta t) = \int p(\tau) \exp(-\Delta t / \tau) d\tau \]

\[p(\tau) \rightarrow p(\alpha) \]

Freely available; implemented in Fortran, C; data handling can be done in Matlab
DLS Measurements Over Time

BAB: $\chi = 20$ mL/g; $c = 0$ ppm

Indicates much longer diffusive time scale: *aggregates*
CONTIN Analysis

$g(\Delta t) = \int p(\tau) \exp\left(-\frac{\Delta t}{\tau}\right) d\tau$

$\langle \tau \rangle = \frac{\int \tau p(\tau) d\tau}{\int p(\tau) d\tau}$

SB: $\chi = 30 \text{ mL/g}; c = 0 \text{ ppm}$
Composition Dependent Growth

Adding dispersant \rightarrow delays, suppresses aggregation

Application to Carbon Nanotubes

- DLS measures Diffusion constant $D \rightarrow$
 - Can be used to obtain Diameter:Length ratio

spheres

$$D = \frac{k_B T}{6\pi \mu a}$$

rods

$$D = \frac{k_B T}{3\pi \mu L} \left[\ln \left(\frac{L}{D} \right) + 0.316 + 0.5825 \left(\frac{D}{L} \right) + 0.050 \left(\frac{D}{L} \right)^2 \right]$$

Dependence on Aspect Ratio

\[p = \frac{D}{L}; \quad D = \frac{k_B T}{3\pi \mu L} \left[\ln\left(\frac{1}{p} \right) + 0.316 + 0.5825p + 0.050p^2 \right] \]

Legend indicates values of \(L \) (nm)

Both bundling & length increase \(\tau \)
Practical Considerations

• Sample Preparation
 – Absorption at λ
 • Confirm/check with UV-vis spectroscopy
 – Concentration
 • Need ‘enough’ particles; avoid multiple scattering
 • Other methods can accommodate multiple scattering (back-scattering, DWS)

– Particle size
 • Estimate given system/sample parameters
Understanding dynamics: Ir NP’s

Power law growth – diffusion limited aggregation
Exponential growth – reaction limited aggregation
What Can SLS Measure?

• Radius of gyration
• Molar mass
• Second virial coefficient
• Fractal dimension

• Types of Materials: suspensions, emulsions, microemulsions, polymers, micelles, proteins

SLS reveals structure over a certain size range
Size Estimates

\[D = \frac{k_B T}{6\pi \mu a} \]
\[a = \frac{2q^2\tau k_B T}{6\pi \mu} \]

Parameters (water)

\[\lambda = 532 \text{ nm} \]
\[\theta = \pi / 2 \text{ Radians} \]
\[n = 1.333 \]
\[\mu = 0.001 \text{ Pa.s} \]
\[T = 298 \text{ K} \]

\[k_B = 1.3806503 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1} \]

\[q = \frac{4\pi n \sin \left(\frac{\theta}{2} \right)}{\lambda} = 0.0315 \text{ nm}^{-1} \]

\[\tau \approx 10^{-4} \text{ s} \]

\[a \approx 40 \text{ nm} \]
Size Distributions: Monodisperse

\[g(\Delta t) \approx \exp\left(-\frac{\Delta t}{\tau}\right) \]

Instrument assumes Gaussian distribution

\[p(\tau) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{1}{\tau} - \Gamma\right)^2\right] \]

Average \(\Gamma = 1/\langle \tau \rangle \)
Variance \(\sigma^2 \)

First Order Cumulant \(g(\Delta t) = \exp(-\Delta t \Gamma) \)

Second Order Cumulant \(g(\Delta t) = \exp(-\Delta t \Gamma + \sigma^2 (\Delta t)^2 / 2) \)

Third Order Cumulant \(g(\Delta t) = \exp(-\Delta t \Gamma + \sigma^2 (\Delta t)^2 / 2 - \omega^3 (\Delta t)^3 / 6) \)

When 2nd order \(\Gamma \sim 3rd \) order \(\Gamma \); Gaussian is good approximation
Electrophoretic mobility

\[\mu = \frac{v}{E} \]

Balance electrostatic and hydrodynamic forces: \(\mu \approx \frac{Qe}{6\pi\eta a} \)

Hückel Theory: \(\zeta = \frac{3\mu\eta}{2D\varepsilon_0} \) \quad \text{Valid for low ionic strengths:} \quad \kappa^{-1} > a \\

Mobility measurements respond to *particle velocity*

Instrument resolution \(\sim 3 \times 10^{-10} \text{ m}^2/\text{Vs} \)
Controlling Precipitation

- Mix oil with precipitant (heptane)
- Filter to Isolate asphaltenes
- Dissolve in toluene → ‘model oil’
- Reprecipitate in heptane; add dispersants

Dodecyl benzene sulfonic acid

Mix:

Centrifuge & decant:

DBSA: 50 250 750 2,500 7,500 10,000 ppm

Controlling MWNT Dispersions

Nitric Acid Treatment Time

<table>
<thead>
<tr>
<th>MWNT 1</th>
<th>MWNT 3</th>
<th>MWNT 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWNT 2</td>
<td>MWNT 4</td>
<td>MWNT 6</td>
</tr>
</tbody>
</table>

Tube Diameter

<table>
<thead>
<tr>
<th>MWNT 13</th>
<th>MWNT 4</th>
<th>MWNT 14</th>
</tr>
</thead>
</table>

Fractal Dimension

HNO$_3$ treatment increases surface oxygen (COOH)