

Light Scattering: In situ characterization of nano-materials

Sara Hashmi Yale University Department of Chemical & Environmental Engineering

Materials Characterization

- Carbon nanotubes
- Metal oxide nanoparticles
- Liposomes & micelles

Homogeneous vs. Heterogeneous Catalysts

Structure Determines Function

Understanding Dynamics

- Precipitation processes
- Gel growth
- Aggregation & sedimentation (or creaming)

Dynamics Reveals Mechanisms & Interactions

Outline

- Methods
 - Dynamic Light Scattering: particle size; growth dynamics
 - Static Light Scattering: aggregate structure
- Selected Projects
 - Control Asphaltene Precipitation & Growth at the Colloidal Scale
 - Identify Homogeneous vs Heterogeneous Catalysis in Water Oxidation
 - Gelation of EPS in Seawater
 - Identify Structure-Function relationship in Carbon Nanotubes
- Additional Projects

Methods

What Can DLS Measure?

- Hydrodynamic Sizes
- Size Distributions
- Aggregation Rates
- Critical Micelle Concentration

6

DLS reveals Brownian motion of a certain size range

Types of Materials: suspensions, emulsions, microemulsions, polymers, micelles

Scattered Light Intensity: t = 0

Static scattering reveals structure

Scattered Light Intensity: $t = \Delta t$

gives time scale of motion

Dynamic light scattering reveals ensemble average motion

Dynamic Light Scattering: Raw Data

Fluctuations in scattered light arise from diffusive motion

Dynamic Light Scattering: Raw Data

Fluctuations in scattered light arise from diffusive motion

Assessing aggregation

Suspension Stability

- Scattered Intensity (magnitude only vs. time)
 - Aggregation/sedimentation over time
 - Addition of salts/surfactants can affect stability

Electrophoretic mobility & Zeta Potential

$$\mu = \frac{v}{E}$$

$$\mu = \frac{v}{E}$$

$$\mu = \frac{v}{E}$$
Balance electrostatic and hydrodynamic forces:
$$\mu \approx \frac{Qe}{6\pi\eta a}$$

Zeta Potential Measurements via Phase Analysis Light Scattering Analogous to Doppler shift, but electric field oscillates

Hückel Theory:
$$\zeta = \frac{3\mu\eta}{2D\varepsilon_0}$$
 For low ionic strengths (apolar) $\kappa^{-1} >> a$
Smoluchowski: $\zeta = \frac{\mu\eta}{D\varepsilon_0}$ For high ionic strength (aqueous) $\kappa^{-1}_{13} << a$

Static Light Scattering

• Fractal dimension of aggregates; *qR*>1

Stabilizing Asphaltene Precipitation

Sara Hashmi Kathy Zhong, Leah Quintiliano Abbas Firoozabadi

> **RERI** Reservoir Engineering Research Institute

Asphaltene precipitation

Soluble in aromatic solvents (*solvents*) Insoluble in light alkanes (*precipitants*)

Colloid growth & aggregation

Mullins, O. C. Energy & Fuels 24 2179 (2010).

Asphaltene Precipitation

- Mix oil with precipitant (heptane)
- Assess sedimentation, aggregation

• Precipitate in heptane with dispersant

Dodecyl benzene sulfonic acid

Centrifuge & decant:

DBSA: 50 250 750 2,500 7,500 10,000 ppm Hashmi, et. al. *Soft Matter* **8** 8778 (2012). Hashmi, et. al. *Langmuir* **8** 8778 (2010).

Aggregation & Dissolution by Acid

CV χ=600 mL/g; dissolution beyond c=2500 ppm

Hashmi, et. al. Soft Matter 8 8778 (2012).

Stabilization without dissolution

CV χ =600 mL/g

Non-ionic dispersant: No dissolution even above 1 wt% dispersant 19

Hashmi, et. al. Soft Matter 8 8778 (2012).

Particle size with non-ionic dispersant

Hashmi, Firoozabadi. Soft Matter 7, 8384 (2011).

Increasing mobility with dispersant

Hashmi, Firoozabadi. Soft Matter 7, 8384 (2011).

Stabilization by adsorption

- Adsorption isotherms corroborate particle characterization
- Non-Ionic dispersant : cmc ~ 10 ppm in heptane
- Stabilizes asphaltenes below cmc

Dispersant micelles not required for charge stabilization; isolated dispersant molecules can cover negative charges.

Hashmi, Firoozabadi. Soft Matter 7, 8384 (2011).

Water Oxidation Catalysis: Homogeneous or Heterogeneous?

Ulrich Hintermair, Staff Sheehan, Julie Thomsen Crabtree & Brudvig Labs Yale Chemistry

Water Oxidation

Goal: $2H_2O \rightarrow 2H_2 + O_2$ Water Splitting

Two Half Reactions:

 $4H^+ + 4e^- \rightarrow 2H_2$ $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ Reduction (lower activation barrier) Oxidation (higher activation barrier)

Oxidant: CAN ceric ammonium nitrate (high oxidative potential) NaIO₄ Sodium periodate (lower oxidative potential)

Catalyst: $Ir^{III} \rightarrow Ir^{IV}$

Oxidation Catalysis

- Platinum: acid stable; not very active
- Ruthenium: active; not acid stable
- Iridium: active & active stable

Garand E, et. al. Phys Chem Chem Phys 14 10109 (2012).

Iridium Precursors

Cp* = pentamethylcyclopentadienyl

 Various ligands: tune properties of molecular materials; tune activity

Iridium Catalysis

 Blue Solution develops during oxidation reaction

Hintermair U, et. al. JACS 134 9785 (2012).

Reaction Assessed by Oxygen Generation

 Oxygen generated at same time as formation of blue band; oxidant gets consumed

Hintermair U, et. al. JACS **135** 10837 (2013).

If the ligands are stable against oxidation...

- No light scattering... no particles...
- \rightarrow Homogeneous catalysis

Hintermair U, et. al. JACS 134 9785 (2012).

4

OH

BF₄

2

If the ligands are oxidized...

- Particles!
- → Heterogeneous catalysis

Hintermair U, et. al. JACS **134** 9785 (2012).

Concentration limits initial growth dynamics

31

Metal Oxide Particle Synthesis

Aggregation is diffusion controlled

Power law dynamics in aggregate growth

Aggregate Characterization

Feature at ~30 nm: primary particle size

Over time D_f evolves to ~2

Suspension forms

Solution only

"Green" Metal Oxide NP Synthesis

CI、

- Aqueous, room temperature
- Simplest precursor (off-the-shelf)

(in preparation)

Gelation in Seawater

Edo Bar-Zeev & Marissa Toussley Elimelech Lab

EPS = extracellular polymeric substances

- Anything secreted by bacteria, microorganisms
 Polysaccharides, proteins, lipids, may contain DNA
- Important in formation of biofilms, pathogenesis
 Participate in quorum sensing
- Naturally occurring in fresh and seawater

Stages of biofilm development (from Stoodley et al. *Annu Rev Microbiol.* **2002**, *56*, 187
Abiotic Gel Formation

Verdugo, P. Ann. Rev. Marine Chemistry, 4 375 (2012).

Abiotic Gel Formation

Ding, Y-X. et. al. *Marine Chemistry*, **106** 456 (2007). Verdugo, P. *Ann. Rev. Marine Chemistry*, **4** 375 (2012).

Abiotic Hydrogel Formation

Verdugo, P. Ann. Rev. Marine Chemistry, 4 375 (2012).

Nanogel Formation: Kinetics & Size

Scattered Intensity

Increasing scatter indicates

Gel formation with time

40

Nanogel Structure

Fractal dimension (D_f) : $I/I_0 = q^{-(D_f)}$

D_f: **1.7 Diffusion-limited aggregation:** imply on a sticky particles

D_f: 2.2

Reaction-limited aggregation: imply on a repulsion barrier

Static Light Scattering (SLS)

Carbon Nanotubes Dispersion $\leftarrow \rightarrow$ Function

Leanne Pasquini, Seyla Azoz Zimmerman & Pfefferle Labs

Environmental Impacts of CNTs

- Applications & Implications
- Release of CNTs to the environment through (products and manufacturing waste)
- Evidence of negative effects of exposure

Proposed Cytotoxicity Mechanism

• Chemical Perturbation • Physical Perturbation

Kang, S., et al. Langmuir, 2008, **24**, 6409-6413.

In Vivo Cytotoxicity

Escherichia Coli K12 are exposed to CNTs in aqueous suspension

(alternate assay: on a membrane)

Plating: Assess reduction of Colony-Forming-Units / mL

Pasquini, L. M. et al. ES&T, 2013, 47, 8775-8783.

Functionalized SWNT Cytotoxicity

- Identify specific physicochemical properties that correlate with the cytotoxicity.
- Ultimately leading to future safer design of SWNTs
- Maintain functionality; minimize negative impact

Surface Functional Group

Pasquini, L. M. et al. ES&T, 2012, 46, 6297-6305.

How does functionalization affect stability?

Quantify Dispersion: Fractal Dimension & Polydispersity

How does functionalization affect stability?

Quantify Dispersion: Fractal Dimension & Polydispersity

Cytotoxicity Mechanism

n-Propylamine

Hydroxy

Phenylhydrazine

 \diamond

O

Δ

Phenyl

Sulfonic Acid

Starting Material

Butyl

Hydrazine

Diphenylcyclopropane

Quantify Dispersion: Fractal Dimension Polydispersity

Methods Precipitation Control NP Synthesis Gelation Structure <> Function Additional Projects

Controlling MWNT Dispersions

Nitric Acid Treatment Time (hrs)

Pasquini, L. M. et al. ES&T, 2013, **47**, 8775-8783. SWNT in water: Azoz et.al. (in preparation).

Additional Projects

Silica NPs/s-SEBS microcapsules

Capsule from water-oil emulsions Shell made of nanoparticles and polyelectrolytes

Gilad Kaufman, Raphael Sarfati, Osuji Lab

Liposomes with Magnets & Contrast Agent

End goal: protect the body from contrast media during X-Ray Imaging of soft tissue

Selenium Remediation via nano-Hematite

Se(VI) more difficult to remediate than Se(IV).

Amanda Lounsbury, Zimmerman Lab

Biomimetic Membranes Using Aquaporin

- Project goal:
 - Vesicle rupture approach to fabricate a biomimetic membrane for water desalination incorporating the protein water channel aquaporin
- Intermediate Formulations & Characterization:
 - Stable, monodisperse vesicles constructed of lipids or block copolymers
- People:
 - Menachem Elimelech (PI)
 - Corey Wilson (co-PI)
 - Jay Werber (graduate student)

Richter, R., Bérat, R. & Brisson, A. Langmuir 3497-3505 (2006).

Jay Werber, Elimelech Lab

Kyle Moor, Ezra Cates, Kim Lab

Meng, Z. et al. Langmuir Zhiyong Meng, Elimelech Lab

Acknowledgements

Acknowledgements

- Meny Elimelech: Edo Bar-Zeev, Marissa Toussley, Jay Werber
- Julie Zimmerman: Leanne Gilbertson, Amanda Lounsbury
- Chinedum Osuji: Gilad Kaufman
- Paul van Tassel: Trey Turner, Candice Gurbatri
- Jaehong Kim: Kyle Moor
- Bob Crabtree/Gary Brudvig: Ulrich Hintermair, Julie Thomsen, Staff Sheehan

MAYO

Alexander von Humboldt Stiftung/Foundation

NSF

(D.

Thank You!

Questions?

Extra Slides

How Small?

Interconversion

 Molecular species → particles (blue) → reduction to molecular species (yellow)

Hintermair U, et. al. JACS **134** 9785 (2012).

Understanding particle size decrease

 $^{\uparrow}$

- Dispersant increases surface area; no dissolution: $SA/V \propto c$
- Spheres: $SA/V \propto a^{-1} \rightarrow a \propto c^{-1}$

What if the particles aren't spherical? For fractal objects: $SA/V \propto a^{-(3-D_f)}$

Hiemenz & Rajagopalan. Principles of Colloid & Surface Chemistry, (1997).

Evidence for surface adsorption

Hashmi, Firoozabadi. Soft Matter 7, 8384 (2011).

Instrument Setup

- ALV 5000 goniometer + Verdi laser (Coherent)
- Instrument parameters: wavelength λ, scattering angle θ, temperature T
- Suspension parameters: index of refraction n, viscosity μ

Dynamic Light Scattering: Setup

Fluctuations in scattered light arise from diffusion 67

Size Distributions: non-monodisperse

CONTIN: Provencher (1982)

No assumptions about shape of distribution

Distinct decays indicate distinct particle populations

$$g(\Delta t) = \int p(\tau) exp(-\Delta t/\tau) d\tau$$

 $p(\tau) \rightarrow p(a)$

Freely available; implemented in Fortran, C; data handling can be done in Matlab

DLS Measurements Over Time BAB: $\chi = 20 \text{ mL/g}; c = 0 \text{ ppm}$ min

CONTIN Analysis

Composition Dependent Growth

Hashmi & Firoozabadi. Journal of Physical Chemistry B (2010) 114 15780.

Application to Carbon Nanotubes

DLS measures Diffusion constant D →
Can be used to obtain Diameter:Length ratio

spheres
$$D = \frac{k_B T}{6\pi\mu a}$$

rods
$$D = \frac{k_B T}{3\pi\mu L} \left[\ln \left(\frac{L}{D}\right) + 0.316 + 0.5825 \left(\frac{D}{L}\right) + 0.050 \left(\frac{D}{L}\right)^2 \right]$$

van Bruggen, Lekkerkerker, Dhont, *Physical Review E* (1997) **56** 4394. Brancaa, Magazu, Mangione. *Diamond & Related Materials* (2005) **14** 846.

Practical Considerations

- Sample Preparation
 - Absorption at λ

532 nm

- Confirm/check with UV-vis spectroscopy
- Concentration
 - Need 'enough' particles; avoid multiple scattering
 - Other methods can accommodate multiple scattering (back-scattering, DWS)

– Particle size

• Estimate given system/sample parameters

Understanding dynamics: Ir NP's

Power law growth – diffusion limited aggregation Exponential growth – reaction limited aggregation

What Can SLS Measure?

- Radius of gyration
- Molar mass
- Second virial coefficient
- Fractal dimension

• Types of Materials: suspensions, emulsions, microemulsions, polymers, micelles, proteins

SLS reveals structure over a certain size range

Size Estimates

Parameters (water)

$$D = \frac{k_B T}{6\pi\mu a}$$

$$D = \frac{1/2q^2\tau}{2q^2\tau k_B T}$$

$$a = \frac{2q^2\tau k_B T}{6\pi\mu}$$

 $k_{\rm B}$ =1.3806503 × 10⁻²³ m² kg s⁻² K⁻¹

 $\lambda = 532$ nm $\theta = \pi / 2$ Radians n = 1.333 $\mu = 0.001$ Pa.s T = 298 K

$$q = \frac{4\pi n \sin\left(\frac{\theta}{2}\right)}{\lambda} = 0.0315 \text{ nm}^{-1}$$
$$\tau \approx 10^{-4} \text{ s} \qquad a \approx 40 \text{ nm}$$

Size Distributions: Monodisperse

First Order Cumulant $g(\Delta t) = \exp(-\Delta t\Gamma)$ Second Order Cumulant $g(\Delta t) = \exp(-\Delta t\Gamma + \sigma^2 (\Delta t)^2 / 2)$ Third Order Cumulant $g(\Delta t) = \exp(-\Delta t\Gamma + \sigma^2 (\Delta t)^2 / 2 - \omega^3 (\Delta t)^3 / 6)$

When 2^{nd} order $\Gamma \sim 3^{rd}$ order Γ ; Gaussian is good approximation ⁷⁸

Electrophoretic mobility

Balance electrostatic and hydrodynamic forces: $\mu \approx \frac{Qe}{6\pi\eta a}$

Hückel Theory: $\zeta = \frac{3\mu\eta}{2D\varepsilon_0}$ Valid for low ionic strengths: $\kappa^{-1} > a$

Mobility measurements respond to *particle velocity* Instrument resolution $\sim 3 \times 10^{-10} \text{ m}^2/\text{Vs}$

Controlling Precipitation

- Mix oil with precipitant (heptane)
- Filter to Isolate asphaltenes
- Dissolve in toluene \rightarrow 'model oil'

• Reprecipitate in heptane; add dispersants

Dodecyl benzene sulfonic acid

Mix:

Centrifuge & decant:

DBSA: 50 250 750 2,500 7,500 10,000 ppm Hashmi, et. al. *Soft Matter* **8** 8778 (2012).

Controlling MWNT Dispersions

Pasquini, L. M. et al. ES&T, 2013, 47, 8775-8783.